Figure 5 - Recovery From Footshock

Published Image

Figure 5. CFA-priming enhances mechanical sensitivity induced by electrical footshock in the previously injured and the contralateral hind paw in males (and not females). (A) Timeline of experimental testing (B) Footshock was simultaneously delivered to the site of the previous injury and the contralateral hindpaw. CFA-primed male mice exhibited enhanced mechanical sensitivity after footshock in both the left (C, D) and the right (E, F) hind paws relative to mice that had undergone fear conditioning but had not been subjected to a previous injury. There was no effect of CFA-priming on shock-induced mechanical sensitivity among female mice (G-J). Data expressed as mean +/- SEM. \(***\) Indicates a between-group difference where p < 0.05 and # indicates a within-subject difference from baseline where p < 0.05.

Statistics

Left Paws

L_Male$Sex <- "Male"
L_Female$Sex <- "Female"

# Select the left paws
left_paws <- rbind(L_Male,L_Female)

# Switch to long form
a <- left_paws %>%
  melt(id.vars=c("ID","CFA","Sex"))

# Run 3-way ANOVA: Sex X CFA X Day of testing (VF)
b <- anova_test(data=a,dv=value,between=c(Sex,CFA),within=variable,wid=ID)
knitr::kable(get_anova_table(b))
Effect DFn DFd F p p<.05 ges
Sex 1 27 0.251 0.6200000 0.002
CFA 1 27 22.366 0.0000631 * 0.177
variable 4 108 36.017 0.0000000 * 0.497
Sex:CFA 1 27 29.188 0.0000103 * 0.219
Sex:variable 4 108 12.032 0.0000000 * 0.248
CFA:variable 4 108 9.054 0.0000024 * 0.199
Sex:CFA:variable 4 108 5.894 0.0002500 * 0.139
# Run both sets of follow ups: 

## Effect of CFA on each day of testing split by sex
b <- a %>%
  group_by(Sex,variable) %>%
  pairwise_t_test(value~CFA)

tt(b)
Sex variable .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
Female Baseline value Naive CFA 8 8 0.96400000 ns 0.96400000 ns
Female 3 hr value Naive CFA 8 8 0.82300000 ns 0.82300000 ns
Female 24 hr value Naive CFA 8 8 0.32200000 ns 0.32200000 ns
Female 3 days value Naive CFA 8 8 0.14700000 ns 0.14700000 ns
Female 7 days value Naive CFA 8 8 0.25400000 ns 0.25400000 ns
Male Baseline value Naive CFA 7 8 0.82100000 ns 0.82100000 ns
Male 3 hr value Naive CFA 7 8 0.00000518 **** 0.00000518 ****
Male 24 hr value Naive CFA 7 8 0.00002210 **** 0.00002210 ****
Male 3 days value Naive CFA 7 8 0.01170000 * 0.01170000 *
Male 7 days value Naive CFA 7 8 0.98500000 ns 0.98500000 ns
## Effect of Sex on each day of testing split by CFA history
c <- a %>%
  group_by(CFA,variable) %>%
  pairwise_t_test(value~Sex)

tt(c)
CFA variable .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
Naive Baseline value Female Male 8 7 0.1470000 ns 0.1470000 ns
Naive 3 hr value Female Male 8 7 0.2300000 ns 0.2300000 ns
Naive 24 hr value Female Male 8 7 0.9360000 ns 0.9360000 ns
Naive 3 days value Female Male 8 7 0.0004790 *** 0.0004790 ***
Naive 7 days value Female Male 8 7 0.3520000 ns 0.3520000 ns
CFA Baseline value Female Male 8 8 0.2360000 ns 0.2360000 ns
CFA 3 hr value Female Male 8 8 0.0000190 **** 0.0000190 ****
CFA 24 hr value Female Male 8 8 0.0000155 **** 0.0000155 ****
CFA 3 days value Female Male 8 8 0.9980000 ns 0.9980000 ns
CFA 7 days value Female Male 8 8 0.9330000 ns 0.9330000 ns
## Effect of DAY within each group
d <- a %>%
  group_by(CFA,Sex) %>%
  pairwise_t_test(value~variable,p.adjust.method = "bonferroni")

tt(d)
CFA Sex .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
Naive Female value Baseline 3 hr 8 8 0.00468000000000 ** 0.0468000000000 *
Naive Female value Baseline 24 hr 8 8 0.05740000000000 ns 0.5740000000000 ns
Naive Female value 3 hr 24 hr 8 8 0.29800000000000 ns 1.0000000000000 ns
Naive Female value Baseline 3 days 8 8 0.00001600000000 **** 0.0001600000000 ***
Naive Female value 3 hr 3 days 8 8 0.05580000000000 ns 0.5580000000000 ns
Naive Female value 24 hr 3 days 8 8 0.00452000000000 ** 0.0452000000000 *
Naive Female value Baseline 7 days 8 8 0.42600000000000 ns 1.0000000000000 ns
Naive Female value 3 hr 7 days 8 8 0.03320000000000 * 0.3320000000000 ns
Naive Female value 24 hr 7 days 8 8 0.25400000000000 ns 1.0000000000000 ns
Naive Female value 3 days 7 days 8 8 0.00017700000000 *** 0.0017700000000 **
Naive Male value Baseline 3 hr 7 7 0.02860000000000 * 0.2860000000000 ns
Naive Male value Baseline 24 hr 7 7 0.00662000000000 ** 0.0662000000000 ns
Naive Male value 3 hr 24 hr 7 7 0.54100000000000 ns 1.0000000000000 ns
Naive Male value Baseline 3 days 7 7 0.44400000000000 ns 1.0000000000000 ns
Naive Male value 3 hr 3 days 7 7 0.13800000000000 ns 1.0000000000000 ns
Naive Male value 24 hr 3 days 7 7 0.04040000000000 * 0.4040000000000 ns
Naive Male value Baseline 7 days 7 7 0.17500000000000 ns 1.0000000000000 ns
Naive Male value 3 hr 7 days 7 7 0.37000000000000 ns 1.0000000000000 ns
Naive Male value 24 hr 7 days 7 7 0.13700000000000 ns 1.0000000000000 ns
Naive Male value 3 days 7 days 7 7 0.54400000000000 ns 1.0000000000000 ns
CFA Female value Baseline 3 hr 8 8 0.00645000000000 ** 0.0645000000000 ns
CFA Female value Baseline 24 hr 8 8 0.01930000000000 * 0.1930000000000 ns
CFA Female value 3 hr 24 hr 8 8 0.65900000000000 ns 1.0000000000000 ns
CFA Female value Baseline 3 days 8 8 0.00735000000000 ** 0.0735000000000 ns
CFA Female value 3 hr 3 days 8 8 0.95900000000000 ns 1.0000000000000 ns
CFA Female value 24 hr 3 days 8 8 0.69600000000000 ns 1.0000000000000 ns
CFA Female value Baseline 7 days 8 8 0.90100000000000 ns 1.0000000000000 ns
CFA Female value 3 hr 7 days 8 8 0.00467000000000 ** 0.0467000000000 *
CFA Female value 24 hr 7 days 8 8 0.01430000000000 * 0.1430000000000 ns
CFA Female value 3 days 7 days 8 8 0.00534000000000 ** 0.0534000000000 ns
CFA Male value Baseline 3 hr 8 8 0.00000000000326 **** 0.0000000000326 ****
CFA Male value Baseline 24 hr 8 8 0.00000000010800 **** 0.0000000010800 ****
CFA Male value 3 hr 24 hr 8 8 0.19600000000000 ns 1.0000000000000 ns
CFA Male value Baseline 3 days 8 8 0.00027300000000 *** 0.0027300000000 **
CFA Male value 3 hr 3 days 8 8 0.00000029100000 **** 0.0000029100000 ****
CFA Male value 24 hr 3 days 8 8 0.00001580000000 **** 0.0001580000000 ***
CFA Male value Baseline 7 days 8 8 0.19600000000000 ns 1.0000000000000 ns
CFA Male value 3 hr 7 days 8 8 0.00000000010800 **** 0.0000000010800 ****
CFA Male value 24 hr 7 days 8 8 0.00000000444000 **** 0.0000000444000 ****
CFA Male value 3 days 7 days 8 8 0.00989000000000 ** 0.0989000000000 ns

Right Paws

R_Male$Sex <- "Male"
R_Female$Sex <- "Female"

# Select the right paws
right_paws <- rbind(R_Male,R_Female)

# Switch to long form
a <- right_paws %>%
  melt(id.vars=c("ID","CFA","Sex"))

# Run 3-way ANOVA: Sex X CFA X Day of testing (VF)
b <- anova_test(data=a,dv=value,between=c(Sex,CFA),within=variable,wid=ID)
knitr::kable(get_anova_table(b))
Effect DFn DFd F p p<.05 ges
Sex 1 27 1.484 0.2340000 0.014
CFA 1 27 28.665 0.0000118 * 0.213
variable 4 108 24.583 0.0000000 * 0.404
Sex:CFA 1 27 32.973 0.0000042 * 0.238
Sex:variable 4 108 8.449 0.0000057 * 0.189
CFA:variable 4 108 6.520 0.0000972 * 0.152
Sex:CFA:variable 4 108 7.949 0.0000118 * 0.180
# Run both sets of follow ups: 

## Effect of CFA on each day of testing split by sex
b <- a %>%
  group_by(Sex,variable) %>%
  pairwise_t_test(value~CFA)

tt(b)
Sex variable .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
Female Baseline value Naive CFA 8 8 0.54900000 ns 0.54900000 ns
Female 3 hr value Naive CFA 8 8 0.88500000 ns 0.88500000 ns
Female 24 hr value Naive CFA 8 8 0.39700000 ns 0.39700000 ns
Female 3 days value Naive CFA 8 8 0.36000000 ns 0.36000000 ns
Female 7 days value Naive CFA 8 8 0.74000000 ns 0.74000000 ns
Male Baseline value Naive CFA 7 8 0.96300000 ns 0.96300000 ns
Male 3 hr value Naive CFA 7 8 0.00000193 **** 0.00000193 ****
Male 24 hr value Naive CFA 7 8 0.00000781 **** 0.00000781 ****
Male 3 days value Naive CFA 7 8 0.02970000 * 0.02970000 *
Male 7 days value Naive CFA 7 8 0.40400000 ns 0.40400000 ns
## Effect of Sex on each day of testing split by CFA history
c <- a %>%
  group_by(CFA,variable) %>%
  pairwise_t_test(value~Sex)

tt(c)
CFA variable .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
Naive Baseline value Female Male 8 7 0.8090000000 ns 0.8090000000 ns
Naive 3 hr value Female Male 8 7 0.2030000000 ns 0.2030000000 ns
Naive 24 hr value Female Male 8 7 0.1420000000 ns 0.1420000000 ns
Naive 3 days value Female Male 8 7 0.0031500000 ** 0.0031500000 **
Naive 7 days value Female Male 8 7 0.2580000000 ns 0.2580000000 ns
CFA Baseline value Female Male 8 8 0.3350000000 ns 0.3350000000 ns
CFA 3 hr value Female Male 8 8 0.0000000132 **** 0.0000000132 ****
CFA 24 hr value Female Male 8 8 0.0000001120 **** 0.0000001120 ****
CFA 3 days value Female Male 8 8 0.9250000000 ns 0.9250000000 ns
CFA 7 days value Female Male 8 8 0.7800000000 ns 0.7800000000 ns
## Effect of DAY within each group
d <- a %>%
  group_by(CFA,Sex) %>%
  pairwise_t_test(value~variable,p.adjust.method = "bonferroni")

tt(d)
CFA Sex .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
Naive Female value Baseline 3 hr 8 8 0.0181000000 * 0.181000000 ns
Naive Female value Baseline 24 hr 8 8 0.2670000000 ns 1.000000000 ns
Naive Female value 3 hr 24 hr 8 8 0.1850000000 ns 1.000000000 ns
Naive Female value Baseline 3 days 8 8 0.0040400000 ** 0.040400000 *
Naive Female value 3 hr 3 days 8 8 0.5540000000 ns 1.000000000 ns
Naive Female value 24 hr 3 days 8 8 0.0592000000 ns 0.592000000 ns
Naive Female value Baseline 7 days 8 8 0.8510000000 ns 1.000000000 ns
Naive Female value 3 hr 7 days 8 8 0.0115000000 * 0.115000000 ns
Naive Female value 24 hr 7 days 8 8 0.1970000000 ns 1.000000000 ns
Naive Female value 3 days 7 days 8 8 0.0024400000 ** 0.024400000 *
Naive Male value Baseline 3 hr 7 7 0.2450000000 ns 1.000000000 ns
Naive Male value Baseline 24 hr 7 7 0.8400000000 ns 1.000000000 ns
Naive Male value 3 hr 24 hr 7 7 0.1750000000 ns 1.000000000 ns
Naive Male value Baseline 3 days 7 7 0.7780000000 ns 1.000000000 ns
Naive Male value 3 hr 3 days 7 7 0.1520000000 ns 1.000000000 ns
Naive Male value 24 hr 3 days 7 7 0.9360000000 ns 1.000000000 ns
Naive Male value Baseline 7 days 7 7 0.3020000000 ns 1.000000000 ns
Naive Male value 3 hr 7 days 7 7 0.0330000000 * 0.330000000 ns
Naive Male value 24 hr 7 days 7 7 0.4040000000 ns 1.000000000 ns
Naive Male value 3 days 7 days 7 7 0.4500000000 ns 1.000000000 ns
CFA Female value Baseline 3 hr 8 8 0.0076700000 ** 0.076700000 ns
CFA Female value Baseline 24 hr 8 8 0.9270000000 ns 1.000000000 ns
CFA Female value 3 hr 24 hr 8 8 0.0060600000 ** 0.060600000 ns
CFA Female value Baseline 3 days 8 8 0.0146000000 * 0.146000000 ns
CFA Female value 3 hr 3 days 8 8 0.7970000000 ns 1.000000000 ns
CFA Female value 24 hr 3 days 8 8 0.0116000000 * 0.116000000 ns
CFA Female value Baseline 7 days 8 8 0.0696000000 ns 0.696000000 ns
CFA Female value 3 hr 7 days 8 8 0.0000394000 **** 0.000394000 ***
CFA Female value 24 hr 7 days 8 8 0.0838000000 ns 0.838000000 ns
CFA Female value 3 days 7 days 8 8 0.0000854000 **** 0.000854000 ***
CFA Male value Baseline 3 hr 8 8 0.0000000112 **** 0.000000112 ****
CFA Male value Baseline 24 hr 8 8 0.0000001390 **** 0.000001390 ****
CFA Male value 3 hr 24 hr 8 8 0.4010000000 ns 1.000000000 ns
CFA Male value Baseline 3 days 8 8 0.0445000000 * 0.445000000 ns
CFA Male value 3 hr 3 days 8 8 0.0000058600 **** 0.000058600 ****
CFA Male value 24 hr 3 days 8 8 0.0000757000 **** 0.000757000 ***
CFA Male value Baseline 7 days 8 8 0.9120000000 ns 1.000000000 ns
CFA Male value 3 hr 7 days 8 8 0.0000000155 **** 0.000000155 ****
CFA Male value 24 hr 7 days 8 8 0.0000001950 **** 0.000001950 ****
CFA Male value 3 days 7 days 8 8 0.0565000000 ns 0.565000000 ns