Figure 5 - Recovery From Footshock
Published Image
Figure 5. CFA-priming enhances mechanical sensitivity induced by electrical footshock in the previously injured and the contralateral hind paw in males (and not females). (A) Timeline of experimental testing (B) Footshock was simultaneously delivered to the site of the previous injury and the contralateral hindpaw. CFA-primed male mice exhibited enhanced mechanical sensitivity after footshock in both the left (C, D) and the right (E, F) hind paws relative to mice that had undergone fear conditioning but had not been subjected to a previous injury. There was no effect of CFA-priming on shock-induced mechanical sensitivity among female mice (G-J). Data expressed as mean +/- SEM. \(***\) Indicates a between-group difference where p < 0.05 and # indicates a within-subject difference from baseline where p < 0.05.
Statistics
Left Paws
$Sex <- "Male"
L_Male$Sex <- "Female"
L_Female
# Select the left paws
<- rbind(L_Male,L_Female)
left_paws
# Switch to long form
<- left_paws %>%
a melt(id.vars=c("ID","CFA","Sex"))
# Run 3-way ANOVA: Sex X CFA X Day of testing (VF)
<- anova_test(data=a,dv=value,between=c(Sex,CFA),within=variable,wid=ID)
b ::kable(get_anova_table(b)) knitr
Effect | DFn | DFd | F | p | p<.05 | ges |
---|---|---|---|---|---|---|
Sex | 1 | 27 | 0.251 | 0.6200000 | 0.002 | |
CFA | 1 | 27 | 22.366 | 0.0000631 | * | 0.177 |
variable | 4 | 108 | 36.017 | 0.0000000 | * | 0.497 |
Sex:CFA | 1 | 27 | 29.188 | 0.0000103 | * | 0.219 |
Sex:variable | 4 | 108 | 12.032 | 0.0000000 | * | 0.248 |
CFA:variable | 4 | 108 | 9.054 | 0.0000024 | * | 0.199 |
Sex:CFA:variable | 4 | 108 | 5.894 | 0.0002500 | * | 0.139 |
# Run both sets of follow ups:
## Effect of CFA on each day of testing split by sex
<- a %>%
b group_by(Sex,variable) %>%
pairwise_t_test(value~CFA)
tt(b)
Sex | variable | .y. | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif |
---|---|---|---|---|---|---|---|---|---|---|
Female | Baseline | value | Naive | CFA | 8 | 8 | 0.96400000 | ns | 0.96400000 | ns |
Female | 3 hr | value | Naive | CFA | 8 | 8 | 0.82300000 | ns | 0.82300000 | ns |
Female | 24 hr | value | Naive | CFA | 8 | 8 | 0.32200000 | ns | 0.32200000 | ns |
Female | 3 days | value | Naive | CFA | 8 | 8 | 0.14700000 | ns | 0.14700000 | ns |
Female | 7 days | value | Naive | CFA | 8 | 8 | 0.25400000 | ns | 0.25400000 | ns |
Male | Baseline | value | Naive | CFA | 7 | 8 | 0.82100000 | ns | 0.82100000 | ns |
Male | 3 hr | value | Naive | CFA | 7 | 8 | 0.00000518 | **** | 0.00000518 | **** |
Male | 24 hr | value | Naive | CFA | 7 | 8 | 0.00002210 | **** | 0.00002210 | **** |
Male | 3 days | value | Naive | CFA | 7 | 8 | 0.01170000 | * | 0.01170000 | * |
Male | 7 days | value | Naive | CFA | 7 | 8 | 0.98500000 | ns | 0.98500000 | ns |
## Effect of Sex on each day of testing split by CFA history
<- a %>%
c group_by(CFA,variable) %>%
pairwise_t_test(value~Sex)
tt(c)
CFA | variable | .y. | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif |
---|---|---|---|---|---|---|---|---|---|---|
Naive | Baseline | value | Female | Male | 8 | 7 | 0.1470000 | ns | 0.1470000 | ns |
Naive | 3 hr | value | Female | Male | 8 | 7 | 0.2300000 | ns | 0.2300000 | ns |
Naive | 24 hr | value | Female | Male | 8 | 7 | 0.9360000 | ns | 0.9360000 | ns |
Naive | 3 days | value | Female | Male | 8 | 7 | 0.0004790 | *** | 0.0004790 | *** |
Naive | 7 days | value | Female | Male | 8 | 7 | 0.3520000 | ns | 0.3520000 | ns |
CFA | Baseline | value | Female | Male | 8 | 8 | 0.2360000 | ns | 0.2360000 | ns |
CFA | 3 hr | value | Female | Male | 8 | 8 | 0.0000190 | **** | 0.0000190 | **** |
CFA | 24 hr | value | Female | Male | 8 | 8 | 0.0000155 | **** | 0.0000155 | **** |
CFA | 3 days | value | Female | Male | 8 | 8 | 0.9980000 | ns | 0.9980000 | ns |
CFA | 7 days | value | Female | Male | 8 | 8 | 0.9330000 | ns | 0.9330000 | ns |
## Effect of DAY within each group
<- a %>%
d group_by(CFA,Sex) %>%
pairwise_t_test(value~variable,p.adjust.method = "bonferroni")
tt(d)
CFA | Sex | .y. | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif |
---|---|---|---|---|---|---|---|---|---|---|
Naive | Female | value | Baseline | 3 hr | 8 | 8 | 0.00468000000000 | ** | 0.0468000000000 | * |
Naive | Female | value | Baseline | 24 hr | 8 | 8 | 0.05740000000000 | ns | 0.5740000000000 | ns |
Naive | Female | value | 3 hr | 24 hr | 8 | 8 | 0.29800000000000 | ns | 1.0000000000000 | ns |
Naive | Female | value | Baseline | 3 days | 8 | 8 | 0.00001600000000 | **** | 0.0001600000000 | *** |
Naive | Female | value | 3 hr | 3 days | 8 | 8 | 0.05580000000000 | ns | 0.5580000000000 | ns |
Naive | Female | value | 24 hr | 3 days | 8 | 8 | 0.00452000000000 | ** | 0.0452000000000 | * |
Naive | Female | value | Baseline | 7 days | 8 | 8 | 0.42600000000000 | ns | 1.0000000000000 | ns |
Naive | Female | value | 3 hr | 7 days | 8 | 8 | 0.03320000000000 | * | 0.3320000000000 | ns |
Naive | Female | value | 24 hr | 7 days | 8 | 8 | 0.25400000000000 | ns | 1.0000000000000 | ns |
Naive | Female | value | 3 days | 7 days | 8 | 8 | 0.00017700000000 | *** | 0.0017700000000 | ** |
Naive | Male | value | Baseline | 3 hr | 7 | 7 | 0.02860000000000 | * | 0.2860000000000 | ns |
Naive | Male | value | Baseline | 24 hr | 7 | 7 | 0.00662000000000 | ** | 0.0662000000000 | ns |
Naive | Male | value | 3 hr | 24 hr | 7 | 7 | 0.54100000000000 | ns | 1.0000000000000 | ns |
Naive | Male | value | Baseline | 3 days | 7 | 7 | 0.44400000000000 | ns | 1.0000000000000 | ns |
Naive | Male | value | 3 hr | 3 days | 7 | 7 | 0.13800000000000 | ns | 1.0000000000000 | ns |
Naive | Male | value | 24 hr | 3 days | 7 | 7 | 0.04040000000000 | * | 0.4040000000000 | ns |
Naive | Male | value | Baseline | 7 days | 7 | 7 | 0.17500000000000 | ns | 1.0000000000000 | ns |
Naive | Male | value | 3 hr | 7 days | 7 | 7 | 0.37000000000000 | ns | 1.0000000000000 | ns |
Naive | Male | value | 24 hr | 7 days | 7 | 7 | 0.13700000000000 | ns | 1.0000000000000 | ns |
Naive | Male | value | 3 days | 7 days | 7 | 7 | 0.54400000000000 | ns | 1.0000000000000 | ns |
CFA | Female | value | Baseline | 3 hr | 8 | 8 | 0.00645000000000 | ** | 0.0645000000000 | ns |
CFA | Female | value | Baseline | 24 hr | 8 | 8 | 0.01930000000000 | * | 0.1930000000000 | ns |
CFA | Female | value | 3 hr | 24 hr | 8 | 8 | 0.65900000000000 | ns | 1.0000000000000 | ns |
CFA | Female | value | Baseline | 3 days | 8 | 8 | 0.00735000000000 | ** | 0.0735000000000 | ns |
CFA | Female | value | 3 hr | 3 days | 8 | 8 | 0.95900000000000 | ns | 1.0000000000000 | ns |
CFA | Female | value | 24 hr | 3 days | 8 | 8 | 0.69600000000000 | ns | 1.0000000000000 | ns |
CFA | Female | value | Baseline | 7 days | 8 | 8 | 0.90100000000000 | ns | 1.0000000000000 | ns |
CFA | Female | value | 3 hr | 7 days | 8 | 8 | 0.00467000000000 | ** | 0.0467000000000 | * |
CFA | Female | value | 24 hr | 7 days | 8 | 8 | 0.01430000000000 | * | 0.1430000000000 | ns |
CFA | Female | value | 3 days | 7 days | 8 | 8 | 0.00534000000000 | ** | 0.0534000000000 | ns |
CFA | Male | value | Baseline | 3 hr | 8 | 8 | 0.00000000000326 | **** | 0.0000000000326 | **** |
CFA | Male | value | Baseline | 24 hr | 8 | 8 | 0.00000000010800 | **** | 0.0000000010800 | **** |
CFA | Male | value | 3 hr | 24 hr | 8 | 8 | 0.19600000000000 | ns | 1.0000000000000 | ns |
CFA | Male | value | Baseline | 3 days | 8 | 8 | 0.00027300000000 | *** | 0.0027300000000 | ** |
CFA | Male | value | 3 hr | 3 days | 8 | 8 | 0.00000029100000 | **** | 0.0000029100000 | **** |
CFA | Male | value | 24 hr | 3 days | 8 | 8 | 0.00001580000000 | **** | 0.0001580000000 | *** |
CFA | Male | value | Baseline | 7 days | 8 | 8 | 0.19600000000000 | ns | 1.0000000000000 | ns |
CFA | Male | value | 3 hr | 7 days | 8 | 8 | 0.00000000010800 | **** | 0.0000000010800 | **** |
CFA | Male | value | 24 hr | 7 days | 8 | 8 | 0.00000000444000 | **** | 0.0000000444000 | **** |
CFA | Male | value | 3 days | 7 days | 8 | 8 | 0.00989000000000 | ** | 0.0989000000000 | ns |
Right Paws
$Sex <- "Male"
R_Male$Sex <- "Female"
R_Female
# Select the right paws
<- rbind(R_Male,R_Female)
right_paws
# Switch to long form
<- right_paws %>%
a melt(id.vars=c("ID","CFA","Sex"))
# Run 3-way ANOVA: Sex X CFA X Day of testing (VF)
<- anova_test(data=a,dv=value,between=c(Sex,CFA),within=variable,wid=ID)
b ::kable(get_anova_table(b)) knitr
Effect | DFn | DFd | F | p | p<.05 | ges |
---|---|---|---|---|---|---|
Sex | 1 | 27 | 1.484 | 0.2340000 | 0.014 | |
CFA | 1 | 27 | 28.665 | 0.0000118 | * | 0.213 |
variable | 4 | 108 | 24.583 | 0.0000000 | * | 0.404 |
Sex:CFA | 1 | 27 | 32.973 | 0.0000042 | * | 0.238 |
Sex:variable | 4 | 108 | 8.449 | 0.0000057 | * | 0.189 |
CFA:variable | 4 | 108 | 6.520 | 0.0000972 | * | 0.152 |
Sex:CFA:variable | 4 | 108 | 7.949 | 0.0000118 | * | 0.180 |
# Run both sets of follow ups:
## Effect of CFA on each day of testing split by sex
<- a %>%
b group_by(Sex,variable) %>%
pairwise_t_test(value~CFA)
tt(b)
Sex | variable | .y. | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif |
---|---|---|---|---|---|---|---|---|---|---|
Female | Baseline | value | Naive | CFA | 8 | 8 | 0.54900000 | ns | 0.54900000 | ns |
Female | 3 hr | value | Naive | CFA | 8 | 8 | 0.88500000 | ns | 0.88500000 | ns |
Female | 24 hr | value | Naive | CFA | 8 | 8 | 0.39700000 | ns | 0.39700000 | ns |
Female | 3 days | value | Naive | CFA | 8 | 8 | 0.36000000 | ns | 0.36000000 | ns |
Female | 7 days | value | Naive | CFA | 8 | 8 | 0.74000000 | ns | 0.74000000 | ns |
Male | Baseline | value | Naive | CFA | 7 | 8 | 0.96300000 | ns | 0.96300000 | ns |
Male | 3 hr | value | Naive | CFA | 7 | 8 | 0.00000193 | **** | 0.00000193 | **** |
Male | 24 hr | value | Naive | CFA | 7 | 8 | 0.00000781 | **** | 0.00000781 | **** |
Male | 3 days | value | Naive | CFA | 7 | 8 | 0.02970000 | * | 0.02970000 | * |
Male | 7 days | value | Naive | CFA | 7 | 8 | 0.40400000 | ns | 0.40400000 | ns |
## Effect of Sex on each day of testing split by CFA history
<- a %>%
c group_by(CFA,variable) %>%
pairwise_t_test(value~Sex)
tt(c)
CFA | variable | .y. | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif |
---|---|---|---|---|---|---|---|---|---|---|
Naive | Baseline | value | Female | Male | 8 | 7 | 0.8090000000 | ns | 0.8090000000 | ns |
Naive | 3 hr | value | Female | Male | 8 | 7 | 0.2030000000 | ns | 0.2030000000 | ns |
Naive | 24 hr | value | Female | Male | 8 | 7 | 0.1420000000 | ns | 0.1420000000 | ns |
Naive | 3 days | value | Female | Male | 8 | 7 | 0.0031500000 | ** | 0.0031500000 | ** |
Naive | 7 days | value | Female | Male | 8 | 7 | 0.2580000000 | ns | 0.2580000000 | ns |
CFA | Baseline | value | Female | Male | 8 | 8 | 0.3350000000 | ns | 0.3350000000 | ns |
CFA | 3 hr | value | Female | Male | 8 | 8 | 0.0000000132 | **** | 0.0000000132 | **** |
CFA | 24 hr | value | Female | Male | 8 | 8 | 0.0000001120 | **** | 0.0000001120 | **** |
CFA | 3 days | value | Female | Male | 8 | 8 | 0.9250000000 | ns | 0.9250000000 | ns |
CFA | 7 days | value | Female | Male | 8 | 8 | 0.7800000000 | ns | 0.7800000000 | ns |
## Effect of DAY within each group
<- a %>%
d group_by(CFA,Sex) %>%
pairwise_t_test(value~variable,p.adjust.method = "bonferroni")
tt(d)
CFA | Sex | .y. | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif |
---|---|---|---|---|---|---|---|---|---|---|
Naive | Female | value | Baseline | 3 hr | 8 | 8 | 0.0181000000 | * | 0.181000000 | ns |
Naive | Female | value | Baseline | 24 hr | 8 | 8 | 0.2670000000 | ns | 1.000000000 | ns |
Naive | Female | value | 3 hr | 24 hr | 8 | 8 | 0.1850000000 | ns | 1.000000000 | ns |
Naive | Female | value | Baseline | 3 days | 8 | 8 | 0.0040400000 | ** | 0.040400000 | * |
Naive | Female | value | 3 hr | 3 days | 8 | 8 | 0.5540000000 | ns | 1.000000000 | ns |
Naive | Female | value | 24 hr | 3 days | 8 | 8 | 0.0592000000 | ns | 0.592000000 | ns |
Naive | Female | value | Baseline | 7 days | 8 | 8 | 0.8510000000 | ns | 1.000000000 | ns |
Naive | Female | value | 3 hr | 7 days | 8 | 8 | 0.0115000000 | * | 0.115000000 | ns |
Naive | Female | value | 24 hr | 7 days | 8 | 8 | 0.1970000000 | ns | 1.000000000 | ns |
Naive | Female | value | 3 days | 7 days | 8 | 8 | 0.0024400000 | ** | 0.024400000 | * |
Naive | Male | value | Baseline | 3 hr | 7 | 7 | 0.2450000000 | ns | 1.000000000 | ns |
Naive | Male | value | Baseline | 24 hr | 7 | 7 | 0.8400000000 | ns | 1.000000000 | ns |
Naive | Male | value | 3 hr | 24 hr | 7 | 7 | 0.1750000000 | ns | 1.000000000 | ns |
Naive | Male | value | Baseline | 3 days | 7 | 7 | 0.7780000000 | ns | 1.000000000 | ns |
Naive | Male | value | 3 hr | 3 days | 7 | 7 | 0.1520000000 | ns | 1.000000000 | ns |
Naive | Male | value | 24 hr | 3 days | 7 | 7 | 0.9360000000 | ns | 1.000000000 | ns |
Naive | Male | value | Baseline | 7 days | 7 | 7 | 0.3020000000 | ns | 1.000000000 | ns |
Naive | Male | value | 3 hr | 7 days | 7 | 7 | 0.0330000000 | * | 0.330000000 | ns |
Naive | Male | value | 24 hr | 7 days | 7 | 7 | 0.4040000000 | ns | 1.000000000 | ns |
Naive | Male | value | 3 days | 7 days | 7 | 7 | 0.4500000000 | ns | 1.000000000 | ns |
CFA | Female | value | Baseline | 3 hr | 8 | 8 | 0.0076700000 | ** | 0.076700000 | ns |
CFA | Female | value | Baseline | 24 hr | 8 | 8 | 0.9270000000 | ns | 1.000000000 | ns |
CFA | Female | value | 3 hr | 24 hr | 8 | 8 | 0.0060600000 | ** | 0.060600000 | ns |
CFA | Female | value | Baseline | 3 days | 8 | 8 | 0.0146000000 | * | 0.146000000 | ns |
CFA | Female | value | 3 hr | 3 days | 8 | 8 | 0.7970000000 | ns | 1.000000000 | ns |
CFA | Female | value | 24 hr | 3 days | 8 | 8 | 0.0116000000 | * | 0.116000000 | ns |
CFA | Female | value | Baseline | 7 days | 8 | 8 | 0.0696000000 | ns | 0.696000000 | ns |
CFA | Female | value | 3 hr | 7 days | 8 | 8 | 0.0000394000 | **** | 0.000394000 | *** |
CFA | Female | value | 24 hr | 7 days | 8 | 8 | 0.0838000000 | ns | 0.838000000 | ns |
CFA | Female | value | 3 days | 7 days | 8 | 8 | 0.0000854000 | **** | 0.000854000 | *** |
CFA | Male | value | Baseline | 3 hr | 8 | 8 | 0.0000000112 | **** | 0.000000112 | **** |
CFA | Male | value | Baseline | 24 hr | 8 | 8 | 0.0000001390 | **** | 0.000001390 | **** |
CFA | Male | value | 3 hr | 24 hr | 8 | 8 | 0.4010000000 | ns | 1.000000000 | ns |
CFA | Male | value | Baseline | 3 days | 8 | 8 | 0.0445000000 | * | 0.445000000 | ns |
CFA | Male | value | 3 hr | 3 days | 8 | 8 | 0.0000058600 | **** | 0.000058600 | **** |
CFA | Male | value | 24 hr | 3 days | 8 | 8 | 0.0000757000 | **** | 0.000757000 | *** |
CFA | Male | value | Baseline | 7 days | 8 | 8 | 0.9120000000 | ns | 1.000000000 | ns |
CFA | Male | value | 3 hr | 7 days | 8 | 8 | 0.0000000155 | **** | 0.000000155 | **** |
CFA | Male | value | 24 hr | 7 days | 8 | 8 | 0.0000001950 | **** | 0.000001950 | **** |
CFA | Male | value | 3 days | 7 days | 8 | 8 | 0.0565000000 | ns | 0.565000000 | ns |